605 research outputs found

    Inherited cavernous malformations of the central nervous system: clinical and genetic features in 19 Swiss families

    Get PDF
    Cavernous malformations (CCMs) are benign, well-circumscribed, and mulberry-like vascular malformations that may be found in the central nervous system in up to 0.5% of the population. Cavernous malformations can be sporadic or inherited. The common symptoms are epilepsy, hemorrhages, focal neurological deficits, and headaches. However, CCMs are often asymptomatic. The familiar form is associated with three gene loci, namely 7q21-q22 (CCM1), 7p13-p15 (CCM2), and 3q25.2-q27 (CCM3) and is inherited as an autosomal dominant trait with incomplete penetrance. The CCM genes are identified as Krit 1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). Here, we present the clinical and genetic features of CCMs in 19 Swiss families. Furthermore, surgical aspects in such families are also discusse

    Familiäre Kavernome des Zentralnervensystems: Eine klinische und genetische Studie an 15 deutsche Familien

    Get PDF
    Zusammenfassung: 1928 beschrieb Hugo Friedrich Kufs erstmalig eine Familie mit zerebralen, retinalen und kutanen Kavernomen. Mittlerweile wurden über 300 weitere Familien beschrieben. Ebenfalls wurden drei Genloci 7q21-q22 (mit dem Gen CCM1), 7p15-p13 (Gen CCM2) und 3q25.2-q27 (Gen CCM3) beschrieben, in denen Mutationen zu Kavernomen führen. Das Genprodukt von CCM1 ist das Protein Krit1 (Krev Interaction Trapped 1), das über verschiedene Mechanismen mit der Angiogenese interagiert. Das neu entdeckte CCM2-Gen enkodiert ein Protein, das möglicherweise eine dem Krit1 ähnliche Funktion in der Regulation der Angiogenese hat. Das CCM3-Gen wurde noch nicht beschrieben. In dieser Arbeit werden sowohl die klinischen und genetischen Befunde bei 15 deutschen Familien beschriebe

    Long-term efficiency of infliximab in patients with ankylosing spondylitis : real life data confirm the potential for dose reduction

    Get PDF
    Objective: To analyse the treatment outcome of patients with ankylosing spondylitis (AS) in the European AS infliximab cohort (EASIC) study after a total period of 8 years with specific focus on dosage and the duration of intervals between infliximab infusions. Methods: EASIC included patients with AS who had received infliximab for 2 years as part of the ASSERT trial. After that period, rheumatologists were free to change the dose or the intervals of infliximab. Clinical data were status at baseline, end of ASSERT and for a total of 8 years of follow-up. Results: Of the initially 71 patients with AS from EASIC, 55 patients (77.5%) had completed the 8th year of anti-tumour necrosis factor (TNF) treatment. Of those, 48 patients (87.3%) still continued on infliximab. The mean infusion interval increased slightly from 6 to 7.1 +/- 1.5 weeks, while 45.8% patients had increased the intervals up to a maximum of 12 weeks. The mean infliximab dose remained stable over time, with a minimum of 3.1 mg/kg and a maximum of 6.4 mg/kg. In patients receiving <5 mg/kg infliximab, the mean infusion interval increased to 7.0 +/- 1.2 weeks. In total, the mean cumulative dose per patient and per year decreased from 3566.30 to 2973.60 mg. Conclusions: We could observe that over a follow-up of 8 years of treatment with infliximab, >85% patients still remained on the same treatment, without any major safety events. Furthermore, both the infusion intervals and also the mean infliximab dose were modestly reduced in >= 70% of the patients without the loss of clinical efficiency

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al

    Why Were More Than 200 Subjects Required to Demonstrate the Bioequivalence of a New Formulation of Levothyroxine with an Old One?

    Get PDF
    At the request of French Regulatory Authorities, a new formulation of Levothyrox® was licensed in France in 2017, with the objective of avoiding the stability deficiencies of an existing licensed formulation. Before launching the new formulation, an average bioequivalence (ABE) trial was conducted, having enrolled 204 subjects and selected for interpretation a narrow a priori bioequivalence range of 0.90–1.11. Bioequivalence was concluded. In a previous publication, we questioned the ability of an ABE trial to guarantee the switchability within patients of the new and old levothyroxine formulations. It was suggested that the two formulations should be compared using the conceptual framework of individual bioequivalence. The present paper is a response to those claiming that, despite the fact that ABE analysis does not formally address the switchability of the two formulations, future patients will nevertheless be fully protected. The basis for this claim is that the ABE study was established in a large trial and analyzed using a stringent a priori acceptance interval of equivalence. These claims are questionable, because the use of a very large number of subjects nullifies the implicit precautionary intention of the European guideline when, for a Narrow Therapeutic Index drug, it recommends shortening the a priori acceptance interval from 0.80–1.25 to 0.90–1.11

    Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.</p> <p>Results</p> <p>We found that the change of the vibrissal slip-resistance is a way to improve the roughness discrimination of surfaces. As roughness increased, the RMS values also increased in almost all cases. In addition, we observed a better discrimination performance in the retraction phase (maximum amount of information).</p> <p>Conclusions</p> <p>The evidence of amplitude changes due to roughness surfaces and slip-resistance levels allows to speculate that texture information is slip-resistance dependent at peripheral level.</p

    Myosin VIIA, Important for Human Auditory Function, Is Necessary for Drosophila Auditory Organ Development

    Get PDF
    BACKGROUND: Myosin VIIA (MyoVIIA) is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck), are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO) organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia) from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase). Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research

    Pathophysiological Mechanisms of Dominant and Recessive GLRA1 Mutations in Hyperekplexia

    Get PDF
    Hyperekplexia is a rare, but potentially fatal, neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden, unexpected auditory or tactile stimuli. This disorder is primarily caused by inherited mutations in the genes encoding the glycine receptor (GlyR) alpha 1 subunit (GLRA1) and the presynaptic glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of GLRA1 in 88 new unrelated human hyperekplexia patients revealed 19 sequence variants in 30 index cases, of which 21 cases were inherited in recessive or compound heterozygote modes. This indicates that recessive hyperekplexia is far more prevalent than previous estimates. From the 19 GLRA1 sequence variants, we have investigated the functional effects of 11 novel and 2 recurrent mutations. The expression levels and functional properties of these hyperekplexia mutants were analyzed using a high-content imaging system and patch-clamp electrophysiology. When expressed in HEK293 cells, either as homomeric alpha 1 or heteromeric alpha 1 beta GlyRs, subcellular localization defects were the major mechanism underlying recessive mutations. However, mutants without trafficking defects typically showed alterations in the glycine sensitivity suggestive of disrupted receptor function. This study also reports the first hyperekplexia mutation associated with a GlyR leak conductance, suggesting tonic channel opening as a new mechanism in neuronal ligand-gated ion channels

    Migralepsy, hemicrania epileptica, post-ictal headache and “ictal epileptic headache”: a proposal for terminology and classification revision

    Get PDF
    Despite the fact that migraine and epilepsy are among the commoner brain diseases and that comorbidity of these conditions is well known, only few reports of migralepsy and hemicrania epileptica (HE) have been published according to the current ICHD-II criteria. Particularly, ICHD-II describes “migraine-triggered seizure” (i.e., migralepsy) among complications of migraine at “1.5.5” (as a rare event in which a seizure happens during migrainous aura), while hemicrania epileptica (coded at “7.6.1”) and post-ictal headache (coded at “7.6.2”) are described among headaches attributed to epileptic seizure. However, to date neither the International Headache Society nor the International League against Epilepsy mention that headache/migraine may be the sole ictal epileptic manifestation. Based on the current knowledge, migralepsy is highly unlikely to exist as such. We, therefore, propose to delete this term until clear evidence its existence is provided. Moreover, we herein propose a revision of terminology and classification criteria to properly represent the migraine/headache relationships. We suggest the term “ictal epileptic headache” in cases in which headache/migraine is the sole ictal epileptic manifestation
    corecore